Ce livre présente à des personnes non Data Scientists, et sans connaissances particulières en mathématiques, la méthodologie du Machine Learning, ses concepts, ses principaux algorithmes et l'implémentation de ceux-ci en Python avec Scikit-learn.
Il commence par une présentation du Machine Learning puis de la méthode CRISP où chaque phase est détaillée avec ses différentes étapes. Les premiers...
Ce livre présente à des personnes non Data Scientists, et sans connaissances particulières en mathématiques, la méthodologie du Machine Learning, ses concepts, ses principaux algorithmes et l'implémentation de ceux-ci en Python avec Scikit-learn.
Il commence par une présentation du Machine Learning puis de la méthode CRISP où chaque phase est détaillée avec ses différentes étapes. Les premiers chapitres s’intéressent donc aux phases de Data Understanding (ou compréhension des données) et de Data Preparation (préparation des données). Dans le premier sont présentés des analyses statistiques de datasets, que cela soit sous forme numérique ou graphique. Dans le deuxième sont vues les principales techniques utilisées pour la préparation des données, avec leur rôle et des conseils sur leur utilisation.
Ensuite, plusieurs chapitres sont dédiés chacun à une tâche de Machine Learning : la classification, la régression, avec le cas particulier de la prédiction, ainsi que le clustering et plus globalement l’apprentissage non supervisé. Pour chaque tâche qui est présentée sont successivement détaillés les critères d’évaluation, les concepts derrière les principaux algorithmes puis leur implémentation avec Scikit-learn.
Pour illustrer les différents chapitres, les techniques et algorithmes présentés sont appliqués sur des datasets souvent utilisés : Iris (classification de fleurs), Boston (prévision de prix de vente d’appartements) et Titanic (prévision de la chance de survie des passagers du bateau). Le code Python est commenté et disponible en téléchargement (sous la forme de notebooks Jupyter) sur le site www.editions-eni.fr.
un livre didactique et cohérent par rapport à son public visé
Anonyme
Très bien, Virginie Mativet rules
Anonyme
Virginie MATHIVET
Virginie Mathivet, CEO Hemelopse, AI PhD Après un doctorat sur les réseaux de neurones, Virginie MATHIVET a enseigné l'IA pendant plus de 10 ans. En 2017, elle a commencé à diriger l'équipe DataSquad chez TeamWork, puis le département Modern Data (IA, Data Engineering, Big Data). Elle est également conférencière. En 2023, elle crée sa propre entreprise, Hemelopse, pour se concentrer sur le conseil stratégique en IA.