Blog ENI : Toute la veille numérique !
💥 Offre spéciale Bibliothèque Numérique ENI :
1 an d'accès à petit prix ! Cliquez ici
🚀 Tous nos livres, vidéos et articles en illimité ! :
Découvrez notre offre. Cliquez ici
  1. Livres et vidéos
  2. L’intelligence artificielle expliquée - Des concepts de base aux applications avancées de l’IA

L’intelligence artificielle expliquée Des concepts de base aux applications avancées de l’IA

11 avis

Informations

Livraison possible dès le 20 janvier 2025
  • Livraison à partir de 0,01 €
  • Version en ligne offerte pendant 1 an
Livres rédigés par des auteurs francophones et imprimés à Nantes

Caractéristiques

  • Livre (broché) - 17 x 21 cm
  • ISBN : 978-2-409-04356-7
  • EAN : 9782409043567
  • Ref. ENI : RIHS-IAEXPL

Informations

  • Consultable en ligne immédiatement après validation du paiement et pour une durée de 10 ans.
  • Version HTML
Livres rédigés par des auteurs francophones et imprimés à Nantes

Caractéristiques

  • HTML
  • ISBN : 978-2-409-04357-4
  • EAN : 9782409043574
  • Ref. ENI : LNRIHS-IAEXPL
Découvrez l'intelligence artificielle de manière accessible avec ce livre conçu pour tous, du néophyte à l'informaticien chevronné. Plongez dans ses applications variées et suivez le processus de création d'une IA, des concepts fondamentaux au déploiement. Apprenez à travers des cas pratiques en Python, examinez les IA génératives comme DALL·E et ChatGPT, et considérez les implications éthiques de l'IA. Ce livre, sans prérequis en informatique, est idéal pour découvrir ce domaine en pleine...
Consulter des extraits du livre en ligne
  • Niveau Débutant à Confirmé
  • Nombre de pages 430 pages
  • Parution février 2024
  • Niveau Débutant à Confirmé
  • Parution février 2024
Ce livre sur la vulgarisation de l'intelligence artificielle a pour objectif de rendre ce domaine complexe accessible à un large public, des néophytes aux informaticiens les plus expérimentés. Il propose un parcours pédagogique complet qui décompose l'IA en termes simples, tout en en proposant une exploration complète, des bases jusqu'à ses applications avancées. Sans nécessiter de connaissance préalable en informatique, il prépare le lecteur à saisir les opportunités d’apprentissage et à relever les défis de ce domaine en constante évolution.   

Le livre commence par présenter les fondamentaux de l'IA en expliquant les concepts clés et en montrant pourquoi elle est si importante aujourd'hui. Il explore les nombreuses applications de l'IA dans des domaines tels que la médecine, la finance et les transports.   

Le lecteur est également guidé à travers les étapes de création d'une IA, en étudiant le processus de collecte de données, de formation de modèles et de déploiement. Les outils et techniques essentiels pour développer des IA performantes sont présentés de manière accessible.   

La programmation en Python, un langage incontournable en IA, est abordée pour les débutants. Un cas pratique de machine learning est proposé pour illustrer concrètement comment l'IA fonctionne.  Vous explorez des cas d’usage autour de l’intelligence artificielle générative telles que DALL·E, capable de générer des images à partir de descriptions textuelles, et ChatGPT, une IA générative puissante et désormais bien connue de tous.   

L'aspect professionnel de l'IA est également couvert, en mettant en lumière les opportunités de carrière passionnantes liées à ce domaine. Une section est également dédiée à la démythification des mathématiques de l'IA, pour rendre ces concepts plus accessibles par une approche non scientifique.   

L'IA et son rôle dans le Web 3.0, ainsi que son impact sur l'industrie 4.0, sont explorés, tout comme les enjeux éthiques liés à l'IA pour une réflexion approfondie sur ce sujet crucial.

Téléchargements

Avant-propos
  1. Un souhait de vulgarisation de l’intelligence artificielle
  2. Un mot sur l’auteur
  3. À qui s’adresse cet ouvrage ?
  4. La structure du livre
  5. Les remerciements
Les fondamentaux de l'intelligence artificielle
  1. Ce que nous allons découvrir
  2. L’histoire de l’intelligence artificielle
  3. L’intelligence artificielle générative
  4. La classification de l’intelligence artificielle
    1. 1. L’intelligence artificielle faible
    2. 2. L’intelligence artificielle forte
    3. 3. L’intelligence artificielle symbolique
    4. 4. L’intelligence artificielle connexionniste
  5. Les modèles d’intelligence artificielle : le machine learning
    1. 1. L’apprentissage automatique : le machinelearning
    2. 2. L’apprentissage supervisé (SupervisedLearning)
    3. 3. L’apprentissage non supervisé (UnsupervisedLearning)
    4. 4. L’apprentissage par renforcement  (ReinforcementLearning)
    5. 5. Détection d’anomalies
    6. 6. La représentation des données
    7. 7. Les algorithmes de clustering
      1. a. Définition d’un cluster
      2. b. Clustering : algorithmes K-Means
      3. c. Clustering : Means Shift
      4. d. Clustering : K-Medoids
    8. 8. Les techniques de clustering
      1. a. Les techniques : le clustering hiérarchique
      2. b. Les techniques : clustering par « auto-organisation »
      3. c. Cas d’utilisation du clustering
    9. 9. Réduction de la dimensionnalité
  6. Les principaux algorithmes supervisés (pour la prédiction de valeur)
    1. 1. Algorithme de régression : arbrede décision (Decision Tree)
    2. 2. Algorithme de régression : régressionlogique  (Logistic Regression)
    3. 3. Algorithme de régression : la régressionlinéaire univariée
    4. 4. Algorithme de classification : machine à vecteurs  desupport (SVM)
    5. 5. Algorithme de classification : Naive Bayes
    6. 6. Algorithme de classification : k-NN
  7. Les réseaux de neurones (Neural NetWorks)
  8. Le traitement du langage naturel NLP
    1. 1. La compréhension du langage naturel (NLU)
    2. 2. La génération du langage naturel(NLG)
    3. 3. Le traitement du langage naturel
  9. Le deep learning : apprentissage profond
    1. 1. L’histoire du deep learning
    2. 2. Le deep learning
    3. 3. Les applications du deep learning
    4. 4. Le combat : machine learning versus deeplearning
  10. Conclusion
Les applications de l'IA
  1. Ce que nous allons découvrir
  2. La reconnaissance de la parole et la traduction automatique
    1. 1. La reconnaissance de la parole
      1. a. VALL-E : l’intelligence artificiellequi imite votre voix
      2. b. Hokkien : l’IA selon Meta
    2. 2. La traduction automatique
  3. Les voitures autonomes
  4. Les chatbots
  5. Les systèmes de recommandation
    1. 1. Popularité de contenu
    2. 2. Filtrage basé sur le contenu
    3. 3. Filtrage collaboratif
    4. 4. Les nombreux défis des systèmesde recommandation
  6. L’exemple « RPA » et l’évolution vers les systèmes cognitifs
  7. L’IA pour la santé
  8. La vision par ordinateur
  9. Conclusion
Les étapes de création d'une IA
  1. Ce que nous allons découvrir
  2. Comprendre l’objectif
  3. La collecte et la préparation de données
  4. La sélection de l’algorithme
  5. La division des données
  6. L’entraînement du modèle
  7. La mise en production et l’amélioration continue
  8. Conclusion
Techniques et outils pour la création d’une IA
  1. Introduction
  2. Les langages de programmation pour l’intelligence artificielle
    1. 1. Python
    2. 2. R
    3. 3. Java
    4. 4. C++
    5. 5. Lisp
  3. Les frameworks pour l’intelligence artificielle
    1. 1. TensorFlow
    2. 2. PyTorch
    3. 3. Keras
    4. 4. Caffe
    5. 5. Scikit-learn
    6. 6. Theano
    7. 7. Apache MXNet
    8. 8. Microsoft Cognitive Services
  4. Outils pour la gestion et la visualisation des données
    1. 1. Jupyter notebook
    2. 2. Pandas
    3. 3. NumPy
    4. 4. Matplotlib
  5. Les plateformes Cloud pour l’IA
    1. 1. Google Cloud
    2. 2. Microsoft Azure AI
  6. Conclusion
Votre premier programme Python
  1. Ce que nous allons découvrir
  2. Eh, pourquoi Python ?
  3. Installation de Python
  4. Installation de PyCharm
  5. Python comme élément de langage
  6. Les bases de Python
    1. 1. Syntaxe et structure Python
    2. 2. Types de données et variables
    3. 3. Opérateurs et expressions
    4. 4. Structures et flux de contrôle
    5. 5. Les fonctions utiles Python
    6. 6. Utilisation des listes en Python
    7. 7. Les fonctions en Python
    8. 8. Entrées et sorties des données
    9. 9. La gestion des erreurs et des exceptions
  7. PIP : le gestionnaire de paquets
  8. Votre premier programme avec Python
  9. Création d’un programme simple avec Python
  10. Conclusion
Machine Learning : cas pratique
  1. Introduction
  2. Diabètes
  3. Diabètes : exercice appliqué
  4. Conclusion
DALL-E : exploiter la créativité de l’IA
  1. Introduction
  2. Introduction à DALL-E
  3. Coûts de DALL-E 3
  4. Découverte de DALL-E
  5. Apprendre à parler à DALL-E
    1. 1. Supprimer et remplacer un élémentavec DALL-E
    2. 2. Créer le logo de votre start-up avec DALL-E
  6. Fonctionnement de DALL-E
    1. 1. Qu’est-ce qu’un GAN ?
    2. 2. Qu’est-ce que GPT-3 ?
  7. Accéder à DALL-E depuis votre programme Python
    1. 1. Étape 1 : obtenez l’accès à l’API
    2. 2. Étape 2 : créezun nouveau projet Python  dans votre nouvel IDE favori,PyTorch
    3. 3. Étape 3 : procédez à l’installationde virtualenv
  8. Utilisation de DALL-E
  9. Quelles sont les interdictions de DALL-E 3 ?
  10. Concurrents de DALL-E
  11. Conclusion
L'IA générative par OpenAI : ChatGPT
  1. Introduction
  2. Avant ChatGPT, l’histoire de GPT
    1. 1. Architecture Transformer
    2. 2. La fin de l’histoire de GPT, enfin presque
    3. 3. Lien entre GPT et ChatGPT
    4. 4. Et maintenant, l’histoire de ChatGPT
    5. 5. Les chiffres clés
    6. 6. Qu’est-ce qu’un LLM ?
  3. Accéder à ChatGPT
  4. Comment utiliser ChatGPT ?
  5. Créer un prompt « avancé »
  6. ChatGPT pour la traduction
  7. ChatGPT pour trouver un emploi
    1. 1. Analyse du job
    2. 2. Créer sa lettre de motivation
    3. 3. Créer un CV
    4. 4. Pour aller plus loin dans sa quête d’emploi
  8. Extensions ChatGPT
  9. Impact de ChatGPT sur le marché de l’emploi
  10. Possibilités offertes par ChatGPT pour les développeurs
  11. Conclusion
Les métiers de l’intelligence artificielle
  1. Les métiers émergents du développement de l'intelligence artificielle
  2. Les métiers de la gestion de données
    1. 1. Architecte de données d’IA
    2. 2. Ingénieurs de données d’IA
    3. 3. Analyste de données d’IA
  3. Les métiers du machine learning et du deep learning
    1. 1. Data Scientist
    2. 2. Ingénieur Machine Learning
    3. 3. Ingénieur deep learning
  4. Les métiers de la recherche en intelligence artificielle
    1. 1. Chercheur en IA
    2. 2. Éthicien en IA
  5. Les métiers émergents
    1. 1. Prompt Engineer
    2. 2. Le thérapeute dans le Métavers
    3. 3. Le Chatbot Master
    4. 4. PsyDesigner
    5. 5. Ingénieur en cobotique : ou comment assisterl’homme  dans son quotidien
  6. Conclusion
Démystification des mathématiques de l'IA
  1. Introduction
  2. Algèbre linéaire et matrices
    1. 1. Vecteurs : les flèches de données
    2. 2. Matrices : outils de transformation
  3. Calcul différentiel et optimisation
    1. 1. Calcul différentiel
    2. 2. Optimisation
  4. Probabilités et statistiques pour comprendre les données
    1. 1. Probabilités
    2. 2. Statistiques
  5. Conclusion
Intelligence artificielle et Web 3.0
  1. Introduction
    1. 1. L’IA à l’ère duWeb 1.0
    2. 2. La bascule vers le Web 2.0
  2. Web 3.0 ? Vous avez dit Web3 ?
  3. L’IA dans la Blockchain
    1. 1. Utilisation de l’IA dans les NFT
      1. a. L’IA dans les NFT
      2. b. L’exemple Bixel
    2. 2. Utilisation de l’IA pour la validation de transactions
    3. 3. IA pour l’amélioration de la sécurité dansla Blockchain
    4. 4. Les défis liés à l’utilisationde l’IA dans la Blockchain
  4. Web 3.0 et IA
    1. 1. L’impact de l’IA sur la création de contenuweb
    2. 2. Les avantages de l’IA pour les recherches en ligne
      1. a. L’exemple Bing ou comment coupler moteurde recherche et IA
      2. b. La réponse de Brave
    3. 3. Les applications de l’IA dans les interfaces utilisateurWeb3
  5. IA et Métavers
    1. 1. Définition du Métavers
    2. 2. Comment le Métavers peut aider à développerune IA : collecter des données, tests
    3. 3. Les tendances actuelles de l’IA et du Métavers
  6. Conclusion
L'intelligence artificielle et l'industrie 4.0
  1. Qu’est-ce qu’une révolution industrielle ?
    1. 1. Industrie 1.0
    2. 2. Industrie 2.0
    3. 3. Industrie 3.0
    4. 4. Industrie 4.0 : révolution des données
  2. Les technologies dites « de base »
  3. Les technologies dites « complémentaires »
  4. L’intelligence artificielle dans l’industrie 4.0
    1. 1. Défi n°1 : la data
    2. 2. Défi n°2 : la sécurité
    3. 3. Défi n°3 : la compétencetechnique
    4. 4. Défi n°4 : la conduite du changement
    5. 5. Défi n°5 : les coûts
  5. Les biais et préjugés de l’IA dans l’industrie
  6. L’IA appliquée au réchauffement climatique
    1. 1. Le phénomène de « villesintelligentes »
    2. 2. Le changement climatique
  7. Conclusion
Une IA oui, mais une IA éthique
  1. Introduction à l’éthique de l’IA
  2. Biais et éthique
  3. Transparence de l’IA
  4. Vie privée et sécurité des données
  5. Responsabilité et prises de décision
  6. Les parties prenantes de l’éthique de l’IA
  7. Conséquences sociales et économiques
  8. L’IA dans l’éducation
  9. Recommandations opérationnelles : CNIL
  10. Formation et sensibilisation
  11. Conclusion
Conclusion
  1. Conclusion
4,5/5 11 avis
Version papier

Bonne analyse

Andre P
Version en ligne

Contenu très intéressant. Très bon rapport qualité prix.

Bernard B
Version papier

Bien mais beaucoup de répétitions

Anonyme
Version papier

Ouvrage de base indispensable pour appréhender le concept d’IA.

Marc P
Auteur : David BRENET

David BRENET

David BRENET est un ingénieur informatique de formation, cumulant plus de deux décennies d'expérience en tant que responsable informatique, principalement dans les domaines de la banque et de l'assurance. En parallèle de cette carrière, il partage ses connaissances en tant qu'enseignant au Conservatoire national des arts et métiers (CNAM) ainsi qu'à l'Institut de Formation de la Profession de l'Assurance (IFPASS). Cette double fonction lui permet de mêler ses compétences pratiques et méthodologiques à sa passion pour les technologies émergentes. David BRENET se consacre notamment à des domaines tels que l'IA générative et le "machine learning" et propose au lecteur un ouvrage précieux de vulgarisation sur l'intelligence artificielle.
En savoir plus

Nos nouveautés

voir plus