Ce support vous propose de passer en revue les grandes catégories de calculs qu'il est possible d'effectuer avec un tableur comme Excel. Il s'adresse aussi bien à l'étudiant en sciences ou en sciences humaines, qu'au professeur, à l'ingénieur, au statisticien, au financier, etc...
Les domaines de calculs abordés sont :
- L'arithmétique de base
- Les calculs comptables élémentaires
- La trigonométrie et ses applications...
Niveau Débutant à Initié
Parution avril 2016
Ce support vous propose de passer en revue les grandes catégories de calculs qu'il est possible d'effectuer avec un tableur comme Excel. Il s'adresse aussi bien à l'étudiant en sciences ou en sciences humaines, qu'au professeur, à l'ingénieur, au statisticien, au financier, etc...
Les domaines de calculs abordés sont :
- L'arithmétique de base
- Les calculs comptables élémentaires
- La trigonométrie et ses applications : topographie, géodésie, astronomie, GPS,…
- Les applications des nombres complexes à la géométrie et à l'électricité
- Les techniques matricielles pour l'algèbre linéaire et l'électricité
- La finance : calcul de rentabilité, calcul de mensualité, calculs actuariels,…
- Les statistiques et les probabilités
- Les tracés de courbes et les graphiques en général
- La résolution d'équations et l'optimisation
- Les fonctions d'accès aux services Web et à XML
- La création de fonctions personnalisées en VBA
L'ouvrage comprend trois parties. La première partie présente des techniques de calculs arithmétiques simples et quelques conseils de "bonne pratique" qui, l'expérience le montre, facilitent l'utilisation d'Excel. La deuxième partie étudie, en s'appuyant sur de nombreux exemples concrets, les différentes catégories de fonctions proposées par Excel 2016. La troisième partie traite d'outils complémentaires, comme les graphiques, le solveur, l'accès aux services Web ou encore le langage VBA, permettant d'étendre les possibilités d'Excel.
2. Les fonctions ARRONDI, ARRONDI.INF, ARRONDI.SUP
3. La fonction ARRONDI.AU.MULTIPLE
4. Les fonctions PAIR et IMPAIR
5. Les fonctions PLANCHER.PRECIS et PLAFOND.PRECIS
6. Les fonctions PPCM et PGCD
7. Les fonctions ENT et TRONQUE
8. Les fonctions LOG, LN, LOG10 et EXP
9. La fonction MOD
10. Les fonctions FACT et COMBIN
B. Fonctions de choix
1. La fonction CHOISIR
2. La fonction DECALER
3. La fonction EQUIV
4. La fonction INDEX
5. La combinaison des fonctions INDEX et EQUIV
La trigonométrie
A. Introduction
B. Les unités d'angles
C. Les fonctions trigonométriques
D. La résolution des triangles
1. Calcul des angles ( a , ß , ? ) de l'aire S connaissant les 3 côtés (a,b,c)
2. Calcul des angles a et ß , de l'aire S et du côté c connaissant ?, a et b (un angle et les deux côtés adjacents connus)
3. Calcul des côtés a et b, de l'angle ?, de l'aire S connaissant les angles a , ß et le côté c (deux angles et le côté commun connus)
4. Calcul des côtés b et c, de l'angle ?, de l'aire S connaissant les angles a , ß et le côté a (deux angles et un côté non commun connus)
5. Exemple de trigonométrie sphérique : calcul de la distance entre deux points du globe terrestre
E. Application à la topographie
1. Calcul de la hauteur d'un point inaccessible
2. Arpentage (calcul de la surface d'un terrain)
F. Astronomie : détermination de la position d'une étoile
Les nombres complexes
A. Rappels sur les nombres complexes
B. Les fonctions Excel de nombres complexes
C. Les nombres complexes en géométrie
1. Affixe d'un vecteur
2. Affixe du barycentre
3. Homothétie
4. Rotation
D. Les nombres complexes en électricité
1. Expression de la loi d'Ohm en nombres complexes
2. Groupements de composants en série
3. Groupements de composants en parallèle
Le calcul matriciel
A. Rappels sur les matrices
B. Traitement des matrices dans Excel
1. Désignation des matrices
2. Les fonctions de matrices
C. Application à l'algèbre linéaire
1. Résolution d'un système de n équations linéaires à n inconnues
2. Diagonalisation d'une matrice
D. Application aux circuits électriques maillés
E. Application des matrices aux rotations
1. Les rotations planes (2D)
2. Les rotations dans l'espace
F. Application des matrices en économie
1. La matrice des coefficients techniques
Les calculs financiers
A. Les remboursements de prêts
1. Le taux d'intérêt de période
2. Le remboursement de prêt par échéances constantes
3. Le calcul du taux d'intérêt réel ou de la durée
B. Les calculs d'actualisation
1. La valeur nette actualisée (flux périodiques)
2. Le taux de rentablilité interne (flux périodiques)
3. Valeur Nette Actualisée et Taux de Rentabilité Interne (flux non périodiques)
C. Les calculs d'amortissement
1. L'amortissement linéaire
2. L'amortissement dégressif
Les calculs statistiques
A. Introduction
B. La statistique descriptive
1. Les fonctions descriptives de base
2. Les fonctions descriptives avancées
C. Le calcul des probabilités
1. La loi Normale (ou Loi de Laplace-Gauss)
2. La loi de Poisson
3. Les autres lois statistiques
D. La statistique inférentielle
1. Valider un modèle - Le test du ? 2 de Pearson
2. Expliquer une variable
3. Comparer deux populations
Les graphiques pour aider au calcul
A. Introduction
B. Le tracé de courbes
1. Les courbes y=f(x)
2. Les courbes en coordonnées polaires ? =f( ? )
3. Les courbes en coordonnées paramétriques : x=f(t), y=g(t)
C. Le tracé des tangentes
1. La technique générale de tracé d'une tangente
2. Animer les positions d'une tangente
a. Implanter une glissière (slider) sur la feuille Excel
b. Programmer l'événement Scroll du slider
D. Les courbes de tendance
E. Les surfaces tridimensionnelles
Les outils d'analyse de scénarios
A. Introduction
B. Les équations à une inconnue : la valeur cible
C. Les équations à plusieurs inconnues : le Solveur
1. Activer le Solveur
2. La valeur cible à partir de plusieurs variables
D. Optimiser à l'aide du Solveur
1. La minimisation d'un coût de production
2. Les problèmes de transport et d'affectation
3. L'optimisation de programmes non linéaires : programmation quadratique
4. L'optimisation de programmes non linéaires : fonctions quelconques
Les fonctions d'accès au Web et à XML
A. Introduction
B. La fonction SERVICEWEB
C. Les fonctions FILTRE.XML et URLENCODAGE
1. Rappels sur le format XML
2. La fonction FILTRE.XML
3. La fonction URLENCODAGE
Créer ses propres fonctions
A. Introduction
B. L'environnement Visual Basic for Applications
1. Activer l'interface de développement (IDE)
2. Maîtriser l'interface de développement (IDE)
C. La programmation sous VBA
1. La procédure Function
2. Les variables
3. Les structures de test
a. Première forme : un traitement ou rien
b. Deuxième forme : l'alternative - un traitement ou un autre traitement
c. Troisième forme : un traitement exclusif parmi n possibilités
4. Les structures de boucles
a. La structure de boucle For...Next
b. La structure de boucle For Each...Next
D. Rédiger des fonctions personnalisées
1. Choisir le type de la fonction
2. Fixer les arguments de la fonction
a. Les arguments facultatifs
b. Les tableaux d'arguments
3. Programmer la logique "métier"
E. Exemples de fonctions personnalisées
1. Calcul du produit vectoriel
2. Astronomie : calcul du Jour Julien
3. Mathématiques : arrondis sur les nombres complexes
Index 237
Claude DUIGOU
Ingénieur et MBA HEC, Claude DUIGOU exerce ses activités de Formateur et de Consultant en entreprise depuis plus de 20 ans. Ses différentes missions le conduisent à intervenir auprès d’entreprises de tailles diverses pour la réalisation, notamment en VBA, de logiciels dans des domaines tels que l’aide à la décision, le contrôle de gestion, la gestion des stocks, la gestion du temps et le contrôle budgétaire. Les systèmes qu’il développe font largement appel aux possibilités et fonctionnalités avancées d’Excel. Cette expérience complète et variée lui permet de proposer un livre très pragmatique sur VBA Excel.